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AbstratSignal proessing with disrete Fourier transform(DFT) works well in standard settings, but is unsat-isfying for rapid hanges in signal spetra. We illus-trate and analyze this phenomenon, develop a noveltransform and prove its lose relation to the Laplaetransform. We deploy our transform for derivinga replaement for the sliding window DFT. Ourapproah features transient e�et and hene showsmore natural response to rapid spetral hanges.Keywordssignal proessing, DFT, sliding window tehnique,spetral analysis1 IntrodutionIn the 17th entury, Christiaan Huygens postu-lated that eah point of an advaning wave frontan be viewed as soure of a new wave (Fig. 1).
Figure 1: Cutting Out an Elementary Wavefrom a Wave Front with an Extremely NarrowSlitThis priniple together with the priniple ofsuperposition suggests that a omplex wave anbe deomposed into elementary waves. How-ever, deomposition is generally ambiguous, asthe following equation demonstrates:
cos(x) + cos(y) = 2 cos(

x − y

2
) cos(

x + y

2
) (1)The terms on either side of the equation repre-sent di�erent deompositions for the same wave.On the left, we have a deomposition into twowaves of di�erent frequenies x and y, but bothwith an amplitude of 1 that remains onstantover time. The term on the right an be in-terpreted as a single wave with frequeny x+y
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and with amplitude 2 cos(x−y
2 ), i.e. with an am-plitude that hanges periodially over time at afrequeny of x − y. In aoustis, the interpre-tation of this equation is known under the termbeats: If two very similar voies sound at almostthe same pith, the e�et is equivalent to havingone of the voies sounding with a loudness thatosillates at very low frequeny.If we assume that the amplitudes of the wavesremain onstant over time, we deide for theleft hand side of the equation. It was Fourierwho formally proved that, with this additionalassumption of steady state, there is indeed aunique deomposition, known as Fourier series(for periodi signals) or the Fourier transform(for aperiodi signals).When in the 1950's tehniques for broadast-ing audio and video over very high frequenyarriers emerged, eletrial engineers found thata purely stati view (i.e. the steady state)is insu�ient. When modeling the e�ets ofprinted board iruit layout for highest fre-queny appliations, the hange of the spe-trum over time an no longer be negleted. TheLaplae transform turned out as a useful toolfor modeling suh dynami environments. Still,the Laplae transform was originally developedto solve higher-order di�erential equations andnever has been adapted for modeling propertiesof tehnial signals.Our mission is to develop a �better� Fouriertransform for audio appliations that onsiderstransient e�et. Our novel spetral transformturns out to be losely related to the Laplaetransform. For algorithmi approximation, wederive a formula that is very similar to the slid-ing window DFT tehnique. Our formula essen-tially di�ers only in an additional deay fatorthat smoothly fades out the past ontent of thesignal, rather than subtrating the signal on-tent that falls o� from the window, as the DFTsliding window does.



1.1 Paper OutlineAfter reviewing the state of art (Set. 2), weexplore generi harateristis of linear signalproessing at the example of a low pass �lter(Set. 3). Thereupon, we highlight those har-ateristis that the Fourier transform does notrespet by onstrution (Set. 3.6). We onse-quently modify the formula of the Fourier trans-form to meet our desired harateristis, andthus ome up with a new transform, the spe-tral transform (Set. 4). For heking the san-ity of our novel transform, we examine its basiproperties (Set. 4.1). In partiular, we provethat our spetral transform boils down to theLaplae transform ombined with a linear trans-form (Set. 4.2). This way, we kill two birds withone stone: �rstly, on a sudden it beomes muhlearer, that in eletrial engineering, it is indeedoften the right hoie to use the Laplae trans-form instead of Fourier transform; seondly, weare muh more on�dent that our spetral trans-form works as expeted, sine it is strongly re-lated to what eletrial engineers have been do-ing for half a entury. Still, our goal is to exploitthe spetral transform for retrieving new or bet-ter algorithms in signal proessing. For this pur-pose, we derive a reursive formula, that servesas the pendant for the sliding window DFT re-ursive formula (Set. 4.3). We evaluate thedi�erenes between the two formulas and theirimpat (Set. 5). Still, our work is far awayfrom being omplete, sine we expet the spe-tral transform to eventually gain muh broaderappliation (Set. 6). In partiular, we expet toderive new or enhaned signal proessing algo-rithms (e.g. �lters) on the basis of the spetraltransform. We lose with a short summary ofour �ndings (Set. 7).2 State of the ArtThe sliding window DFT algorithm [1; 2℄ im-plements a disrete approximation of the Fouriertransform and delivers the oe�ients for the se-ries of the partials of a periodi wave. Sine realworld aousti signals are usually not periodi, awindow funtion is used to mask a frame of lim-ited time and ignore the signal outside of thistime frame (Fig. 2a). Instead, the signal withinthe frame is extrapolated by periodi ontinua-tion suitable for the DFT (Fig. 2b). However,the disontinuities at the ontinuation pointswould add arti�ial harmoni ontent with abase frequeny determined by the size of thewindow. Therefore, the signal is usually faded

out towards the window borders, e.g. by multi-plying the signal with a Gauss distribution urve(Fig. 2).The sliding window DFT works fairly wellfor the stati ase: As long as the spetrumof the signal hanges slowly over time, it doesnot muh matter where exat the spetral anal-ysis starts and where it ends. Moreover, assum-ing a su�iently long window size that oversdeep frequenies, the Gauss distribution urveattenuates the amount of all frequenies almostevenly. However, in the dynami ase, the slid-ing window responds slowly to rapid hanges inthe spetrum, sine the Gaussian �lter attenu-ates partiularly the most reent samples.
(a)

(b)

(c)Figure 2: Preparation of a Signal for DFTOn last year's LAC, ffith [3; 4℄ presenteda Csound implementation of the sliding windowDFT based on the reursive funtion Ft+1(n) =

(Ft(n) − ft + ft+N )e2πi n
N . This funtion stillinherits the steady state assumption from theFourier transform. Our goal is to develop andimplement a transform for spetral analysis thatresponds quikly to rapid hanges and behavesmore losely to linear �lters.3 Case Study: RC Low Pass FilterWe need to know more about the propertiesof signal spetra. Intuitively, we onsider thespetrum of a omplex signal as deomposi-tion of the signal into a weighted (possibly in-�nite) sum of primitive omponents (the spe-tral lines). That is, more formally, the primitiveomponents are base vetors, and the omplexsignal is a linear ombination of them. There-fore, there is a linear relation between signalsand spetra: if signal f1(t) has spetrum S1(t)and f2(t) has spetrum S2(t), then we expet



f1+2(t) := f1(t) + f2(t) to have the spetrum
S1+2(t) := S1(t) + S2(t).Consequently, we hoose a linear �lter tostudy the harateristis of linear signal proess-ing. To keep mathematis feasible, we hoosea very simple linear �lter. The probably mostsimple yet non-trivial linear �lter is the RC lowpass �lter.3.1 Filter DiagramFig. 3 shows the diagram of the eletrial im-plementation of an RC low pass �lter with re-sistor R and apaitor C. We denote in short
τ = RC if we do not want to di�erentiate be-tween R and C. For further simpli�ation, weassume that the inoming signal Uin has neg-ligible low impedane, and that the load on-neted to the output of the �lter has negligiblehigh impedane. In pratie, this behavior anbe fairly approximated by adding ampli�ers intothe signal �ow.

IR

UR

IC

UCUin Uout

Figure 3: RC Low Pass Filter3.2 Natural Response FuntionWe want to express the �lter's output sig-nal Uout(t) in terms of its input signal Uin(t).With Uout(t) = Uin(t) − UR(t), UR(t) =
RIR(t), IR(t) = IC(t) = dQC(t)/dt, and
QC(t) = CUC(t) = CUout(t), we get in sum-mary Uout(t) = Uin(t) − τ dUout(t)

dt , that is
U′

out(t) =
1

τ
(Uin(t) − Uout(t)).This is an ordinary linear di�erential equa-tion of �rst order. A solution for this equationan be found in standard literature on di�eren-tial equations [5℄: Assuming there is some initialvalue Uout(t0), t0 ≤ t1 given (i.e. the apaitor'sharge at some earlier point in time), the equa-tion has the only solution

Uout(t1) = e
t0−t1

τ Uout(t0) +
1

τ

∫ t1

t0

Uin(t)e
t−t1

τ dt(2)Note that for omputing Uout(t1) it is su�-ient to know the output Uout(t0) at some ear-lier point in time t0 < t1 and the input signalin the range of time (t0, t1). That is, the apa-itor's harge represents all of the signal's pasthistory as to what extent it is required for lowpass �ltering.For the speial ase t0 → −∞, the equationsimpli�es as follows:
Uout(t1) =

1

τ

∫ t1

−∞

Uin(t)e
t−t1

τ dt (3)3.3 Steady State Transfer FuntionWe examine the transfer funtion of the RClow pass by omputing the natural responseof the �lter when feeding a sine wave into itsinput. As sine wave, we ould use the fun-tion Uin(t) = ρ sin(φt + ϕ) with sine ampli-tude ρ and phase shift ϕ. However, sine alu-lating with trigonometri funtions is umber-some, we prefer the omplex notation Uin(t) =

ρ(i sin(φt + ϕ) + cos(φt + ϕ)) = ρei(φt+ϕ). Sinewe examine the steady state, we do not wantto onsider any initial value of the �lter. Conse-quently, we ompute the transfer funtion basedon Eqn. 3 rather than on Eqn. 2:
Uout(t1) =

1

τ

∫ t1

−∞

ρei(φt+ϕ)e
t−t1

τ dt

=
1

τ
ρeiϕ−t1/τ

[

τ

iφτ + 1
e

t(iφτ+1)
τ

]t=t1

t=−∞

=
1

τ
ρeiϕ−t1/τ τ

iφτ + 1
e

t1(iφτ+1)
τ

=
1

iφτ + 1
ρei(φt1+ϕ)

=
1

iφτ + 1
Uin(t1) = . . . =

=
e−iarctan(φτ)

√

1 + (φτ)2
Uin(t1) (4)That is, the signal is attenuated by fator

√

1 + (φτ)2
−1 and phase-shifted by arctan(φτ).(The last step in the alulation omprises aomplex partial fration expansion and some



other onversions, that we have omitted here forspae restritions.)Fig. 4 shows the input sine wave � 1kHz andthe resulting steady state output sine wave for
τ = 3ms with observable dereased amplitudeand phase shift.
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signal inputFigure 4: RC Low Pass Steady State Transfer3.4 Transient E�etImagine that after a long period of a null sig-nal, a sine wave suddenly sets in. That is, weexamine the RC �lter response to the funtion:
Uin(t) := {

sin(t) if t ≥ 0,
0 otherwise. (5)Sine Uin(t) = 0∀t < 0, the integral in Eqn. 3is 0 ∀t1 < 0, that is, Uout(t1) = 0 ∀t1 < 0. Forthe remaining ase t1 ≥ 0 we derive

Uout(t1) =
1

τ
e

−t1
τ

∫ t1

−∞

Uin(t)e
t
τ dt

=
1

τ
e

−t1
τ

∫ t1

0
sin(t)e

t
τ dt (6)

= . . . (twie integration by parts) . . .

= −e
−t1

τ

[

1

τ
cos(t)e

t
τ −

1

τ2
sin(t)e

t
τ

]t=t1

t=0

− e
−t1

τ
1

τ3

∫ t1

0
sin(t)e

t
τ dt. (7)By isolating the integral in Eqns. 6 and 7,it an be eliminated, leading to Uout(t) =

τ
τ2+1

( 1
τ sin(t) − cos(t) + e

−t
τ ) for t ≥ 0. In sum-mary, we have

Uout(t) = {
sin(t)−τ cos(t)+τe

−t
τ

τ2+1 ∀t ≥ 0,

0 otherwise. (8)
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signal inputFigure 5: RC Low Pass Transient E�etFig. 5 illustrates the transient e�et: In thesteady state, the output signal is negative, whenthe sine wave traverses the zero rossing up-wards. However, when the sine wave suddenlysets in, the harge of the apaitor is initiallyzero rather than negative. Consequently, theoutput signal starts somewhat too high, but ap-proahes asymptotially to the steady state. InFig. 5, we additionally depit this output aber-ration, that asymptotially drops to zero. Simi-larly, the phase of the output signal approahesasymptotially to the steady state.3.5 DisretizationFor algorithmi implementation of the RC lowpass, we assume that the input signal is approx-imated by a disrete series of �oating point val-ues Uin(t0), Uin(t1), Uin(t2), . . . , Uin(tn) that areequidistant over time: t1 − t0 = t2 − t1 = . . . =
tn − tn−1 = ∆t. Approximately, we assume
Uin_approx(t) ≡ Uin(ti)∀t ∈ [ti, ti+1). Then,from Eqn. 2 follows:

Uout_approx(t1)

=e
t0−t1

τ Uout_approx(t0)

+
1

τ

∫ t1

t0

Uin_approx(t)e
t−t1

τ dt

=e−∆t/τUout_approx(t0) +
1

τ

∫ t1

t0

Uin(t0)e
t−t1

τ dt

=e−∆t/τUout_approx(t0) + Uin(t0)
1

τ

[

τe
t−t1

τ

]t=t1

t=t0

=e−∆t/τUout_approx(t0) + Uin(t0)(1 − e−∆t/τ )

=αUout_approx(t0) + (1 − α)Uin(t0) (9)for α = e−∆t/τ . Therein, ω = 2πf = 1/τrepresents the ut-o� frequeny f [Hz℄ of the low



pass and ∆t the time [s℄ between two adjaentsamples.For an even more preise approximation,we an linearly interpolate Uin_approx(t), ti ≤
t ≤ ti+1 between the adjaent samples
Uin_approx(ti) = Uin(ti) and Uin_approx(ti+1) =
Uin(ti+1) rather than assuming Uin_approx(t) ≡
Uin(ti)∀t ∈ [ti, ti+1). This way, we get

Uout_approx(t1)

=e
t0−t1

τ Uout_approx(t0)

+
1

τ

∫ t1

t0

(Uin(t0)+

t − t0
t1 − t0

(Uin(t1) − Uin(t0)))e
t−t1

τ dt

= . . . (quite lengthy alulation) . . .

=e
t0−t1

τ Uout_approx(t0)

−

(

e
t0−t1

τ +
τ(e

t0−t1
τ − 1)

t1 − t0

)

Uin(t0)

+

(

1 +
τ(e

t0−t1
τ − 1)

t1 − t0

)

Uin(t1) (10)for a marginally better approximation.3.6 DisussionHaving the steady state transfer funtion inmind, the RC low pass �lter an be viewed asa linear operation not only on the signal itself,but also on its spetrum. Performing suh lin-ear operations is often realized by transforminga signal into frequeny spae, then applying theoperation, and then transforming bak to signalspae. This is, where the Fourier integral (andits inverse) is typially used:
F(f(t), φ) :=

∫ +∞

−∞

f(t)e−2πiφtdt (11)However, the RC low pass �lter funtion
Uout(t1) =

1

τ

∫ t1

−∞

Uin(t)e
t−t1

τ dtdi�ers from the Fourier integral in some sig-ni�ant properties:Time as Parameter. The Fourier trans-form is applied on an input funtion as a wholeand has a frequeny as parameter, but not a

point of time. That is, the Fourier transformassumes a stati spetrum that does not hangeover time. Instead, a window is introdued andthe signal in this window is periodially extrap-olated to retrieve a spetrum that is bound to alimited range in time. In ontrast, the RC lowpass �lter output is a funtion over time.Past Time Contribution. Sine theFourier transform is designed to ompute thestati spetrum over the omplete signal, it re-quires the future ourse of the signal. The win-dow tehnique onstruts a future signal by pe-riodially extrapolating the signal. In ontrast,the output of the RC low pass �lter an for somepoint t = t1 of time be su�iently expressed interms of a funtion over the input signal rang-ing from t = −∞ to t = t1. It is not neessaryto know or extrapolate the future ourse of thesignal.Exponential Deay. The Fourier trans-form weights the input funtion with fator
e2πiφt =: w(t). Sine |w(t)| = 1∀t, φ ∈ R, allfuntion values of the signal ontribute equallyto the transform, regardless of what point oftime they represent. In ontrast, the signal'sontribution to the RC low pass output deaysexponentially over time: the signal's reent his-tory has muh more impat on the �lter outputthan the signal's history long ago.4 The Spetral TransformWe present and examine the spetral transformthat modi�es the Fourier transform suh that iteliminates all de�ienies disussed in Set. 3.6:

S(f(t), φ, t0) :=

(µ − 2πi)φ

∫ t0

−∞

f(t)e(µ−2πi)φ(t−t0)dt (12)The parameter t0 represents the point of timeof the spetrum. The upper bound of the in-tegral is t0, suh that the future signal is notinvolved. Lastly, the e funtion, that performsonly a omplex rotation on the input signal inthe Fourier transform, is augmented with thepositive real value µ, suh that the signal is alsoattenuated to honor exponential deay as we ob-served in the RC low pass. The transform issaled by fator (µ − 2πi)φ to simplify some ofthe subsequent expressions.For simpliity, we often normalize f(t) suhthat t0 beomes 0:



S(f(t), φ) :=

(µ − 2πi)φ

∫ 0

−∞

f(t)e(µ−2πi)φtdt. (13)The normalized form is related to the full formas follows:
S(f(t), φ) = S(f(t − t0), φ, t0). (14)Similar to the reursive RC low pass (Eqn. 2)expression, the spetral transform an be ex-pressed reursively as follows:

S(f(t), φ, t1)

=(µ − 2πi)φ

∫ t0

−∞

e(µ−2πi)φ(t−t1)f(t)dt

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt

=e(µ−2πi)φ(t0−t1)

(µ − 2πi)φ

∫ t0

−∞

e(µ−2πi)φ(t−t0)f(t)dt

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt

=e(µ−2πi)φ(t0−t1)S(f(t), φ, t0)

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt. (15)4.1 Basi PropertiesWe give some basi properties of the spetraltransform. For spae restritions, we omit all(not so di�ult) proofs.Linearity.
S(a1f1(t) + a2f2(t), φ, t0) =

a1S(f1(t), φ, t0) + a2S(f2(t), φ, t0). (16)Convolution.
S((f1 ∗ f2)t0(t), φ, t0) =

1

2πφ
S(f1(t), φ,−t0)S(f2(t), φ, t0). (17)Di�erentiation.

S(f (n)(t), φ, t0) =

((2πi − µ)φ)nS(f (0)(t), φ, t0)+

2πφ

n−1
∑

j=0

((2πi − µ)φ)n−1−jf (j)(t0). (18)

Time Shifting.
S(f(t + ξ), φ, t0) =

e−(µ−2πi)φξS(f(t), φ, t0)+

(µ − 2πi)φ

∫ ξ

t0

e(µ−2πi)φ(r−ξ−t0)f(r)dr (19)
∀ξ ∈ R, ξ ≥ 0.Saling.

S(f(t),
φ

a
, t0) = S(g(t), φ, t0), (20)with g(t) = f((t − t0)a + t0)∀a ∈ R, a > 0.Frequeny Shifting.

S(f(t), φ + α, t0) =

φ + α

φ
S(e(µ−2πi)α(t−t0)f(t), φ, t0). (21)4.2 Relation to Laplae TransformThe spetral transform is losely related to theLaplae transform:

L(g(r), s) =
1

(µ − 2πi)φ
(S(f(t), φ)) (22)for s = (µ − 2πi)φ, r = −t, and g(r) ≡ f(t).Proof.

L(g(r), s) =

∫

∞

0
e−srg(r)dr

=

∫

∞

0
e−(µ−2πi)φrg(r)dr

= −

∫

−∞

0
e(µ−2πi)φtg(r)dt

=

∫ 0

−∞

e(µ−2πi)φtg(r)dt

=

∫ 0

−∞

e(µ−2πi)φtf(t)dt

=
1

(µ − 2πi)φ
(S(f(t), φ)).This lose relation to Laplae explains on theone hand why eletri engineers are so suess-ful in deploying the Laplae transform (althoughour results suggests that they require some ad-ditional pre- and post-transform). On the otherhand, we are now on�dent that we are onthe right trak with our transform, sine weinherit those important features from Laplae,



that eletri engineers laim to be essential whenonsidering the non-steady state.We also an now ompute the inverse spetraltransform from the inverse Laplae transform bysubstituting r = −t, g(r) = f(t), s = (µ−2πi)φ,
ds = (µ − 2πi)dφ:
g(r) =

1

2πi

∫ c+i∞

c−i∞
esrL(g(r), s)ds

=
1

2πi

∫ c+i∞

c−i∞
esr 1

(µ − 2πi)φ
(S(f(t), φ))ds

f(t) =
1

2πi

∫ c+i∞

c−i∞
e(µ−2πi)φ(−t)

(
1

(µ − 2πi)φ
(S(f(t), φ)))(µ − 2πi)dφ

=
1

2πi

∫ c+i∞

c−i∞
e−(µ−2πi)φt (S(f(t), φ))

φ
dφ(23)Transfer Funtion for sin(αt).

S(sin(αt), φ) evaluates (after twie integra-tion by parts) to −(µ−2πi)φα
(µ−2πi)2φ2+α2 . Alternatively,knowing from Laplae transform tables that

L(g(r), s) = −α
s2+α2 for g(r) = − sin(αr),with Eqn. 22, s = (µ − 2πi)φ, r = −tand g(r) = − sin(αr) = − sin(α(−t)) =

sin(αt) = f(t), we easily get the same result
S(sin(αt), φ) = −(µ−2πi)φα

(µ−2πi)2φ2+α2 .
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4.3 DisretizationSimilar to the RC low pass, we disretize thespetral transform to derive an algorithmi ap-proximation. For two suessive samples attimes t0 and t1 with ∆t = t1 − t0 we derive
S(f(t), φ, t1) =e−(µ−2πi)φ∆tS(f(t), φ, t0)+

(1 − e−(µ−2πi)φ∆t)f(t0), (24)assuming that f(t) ≡ f(t0) ∀t : t0 ≤ t < t1.Proof. The disretization follows immediatelyfrom the reursive form of the spetral transform(Eqn. 15):
S(f(t), φ, t1)

=e(µ−2πi)φ(t0−t1)S(f(t), φ, t0)

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt

=e−(µ−2πi)φ∆tS(f(t), φ, t0)

+ (µ − 2πi)φf(t0)

[

e(µ−2πi)φ(t−t1)

(µ − 2πi)φ

]t=t1

t=t0

=e−(µ−2πi)φ∆tS(f(t), φ, t0)

+ f(t0)(1 − e−(µ−2πi)φ∆t) (25)Interestingly, Douglas and Soh [6℄ sale thesignal in their sliding window DFT implementa-tion with fator 0 ≪ λ̂ < 0, that resembles our
eµφt for t < 0. Still, their fous is on numerialstability of the DFT rather than transient e�et.Also, given an L-sized window, they remove thesample that falls o� the sliding window, saledby λ̂L. Instead, we do not have a limited win-dow size, suh that limL→∞ λ̂L = 0 and there isnothing to remove.5 EvaluationFor evaluating our work, we developed a DSPlibrary on a Linux system with JDK 1.6 thatimplements the spetral transform. The soureode is available at http://www.soundpaint.org/spetral-transform/.Unfortunately, we have not yet developed asu�iently persuasive implementation of the in-verse spetral transform, presumably for issuessimilar to that of the inverse sliding DFT [3℄.Instead, we ompare the graphial representa-tion of both, the sliding DFT and our spetral



transform (Fig. 8, 9) for a slap noise (Fig. 7)reorded at 44.1kHz. We hose a DFT windowsize of N := 512, and log(µ) := (N − 1)/N .

Figure 7: Slap Noise
Figure 8: Sliding DFT of Slap Noise

Figure 9: Spetral Transform of Slap NoiseNo attempt was made to apply the Gaus-sian �lter to either DFT or spetral transform(Set. 2), hene the sliding DFT also reatspromptly to rapid hanges, as we demanded.However, the DFT tends to produe overlysharp lines, that lead to a spekled spetrum.Moreover, when the initial samples fall o� fromthe DFT window, the initial spetrum peak isehoed. In ontrast, our spetral transform pro-dues more balaned frequeny areas of exita-tion and fades out smoothly, while the initialpeak is even broader than in the DFT.6 Future WorkThe presumably most annoying issue is that ourtransform is still missing its disrete inverse im-plementation. Signal manipulation in the fre-queny domain appears only useful, when themodi�ed signal an be reonstruted from the

frequeny domain. We are on�dent that we will�nd an adequate solution, sine our transform islosely related to sliding DFT and Laplae, bothof whih are known to be invertible.7 ConlusionOriginally inspired by the wave theory of light,we developed our spetral transform and im-plemented it under Linux as a small Java li-brary for the �eld of audio signal proessing,but expet broad appliability in various �elds ofphysis. The transform shifts unertainty fromsignal to frequeny domain by onstruting a dy-namially adapting spetrum for a any sharplyde�ned signal at any sharp point of time. Com-pared with DFT, the spetral transform givesmore natural results in environments when thespetrum hanges rapidly. The drawbak is thatit laks of determining sharp spetral lines, asan be onstruted from steady state signals.This behavior is a natural tribute to the dynami-ally hanging spetrum. Rather, our transformenounters the full signal history with exponen-tial deay, not just the steady state extrapola-tion of a signal setion, as the DFT does.Referenes[1℄ Lawrene R. Rabiner and Bernard Gold.Theory and Appliation of Digital SignalProessing. Prentie Hall, 1975.[2℄ John J. Shynk. Frequeny-domain and mul-tirate adaptive �ltering. IEEE Signal Pro-essing Magazine, 9(1), January 1992.[3℄ Russell Bradford, Rihard Dobson, and John�th. Sliding is smoother than jumping. InProeedings of the ICMC 2005, pages 287�290, Tampere, Finland, September 2005. Su-viSoft Oy Ltd.[4℄ John �th. Sliding DFT for fun andmusial pro�t. In Proeedings of the6th International Linux Audio Conferene(LAC2008), Köln, Germany, Feb�Mar 2008.Kunsthohshule für Medien Köln.[5℄ Wolfgang Walter. Gewöhnlihe Di�eren-tialgleihungen: eine Einführung. SpringerLehrbuh. Springer Verlag, Berlin, Heidel-berg, New York, 4th edition, 1989.[6℄ S.C. Douglas and J.K. Soh. A numerially-stable sliding-window estimator and its ap-pliationto adaptive �lters. In ConfereneReord of the Thirty-First Asilomar Confer-ene on Signals, Systems & Computers, vol-ume 1, pages 111�115, November 1997.


