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Abstract

Signal processing with discrete Fourier transform
(DFT) works well in standard settings, but is unsat-
isfying for rapid changes in signal spectra. We illus-
trate and analyze this phenomenon, develop a novel
transform and prove its close relation to the Laplace
transform. We deploy our transform for deriving
a replacement for the sliding window DFT. Our
approach features transient effect and hence shows
more natural response to rapid spectral changes.
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1 Introduction

In the 17th century, Christiaan Huygens postu-
lated that each point of an advancing wave front
can be viewed as source of a new wave (Fig. 1).

Figure 1: Cutting Out an Elementary Wave
from a Wave Front with an Extremely Narrow
Slit

This principle together with the principle of
superposition suggests that a complex wave can
be decomposed into elementary waves. How-
ever, decomposition is generally ambiguous, as
the following equation demonstrates:
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The terms on either side of the equation repre-
sent different decompositions for the same wave.
On the left, we have a decomposition into two
waves of different frequencies « and y, but both
with an amplitude of 1 that remains constant
over time. The term on the right can be in-

. . Tty
terpreted as a single wave with frequency =5+

cos(x) + cos(y) = 2 cos(

and with amplitude 2 cos(*5%), i.e. with an am-
plitude that changes periodically over time at a
frequency of x — y. In acoustics, the interpre-
tation of this equation is known under the term
beats: If two very similar voices sound at almost
the same pitch, the effect is equivalent to having
one of the voices sounding with a loudness that

oscillates at very low frequency.

If we assume that the amplitudes of the waves
remain constant over time, we decide for the
left hand side of the equation. It was Fourier
who formally proved that, with this additional
assumption of steady state, there is indeed a
unique decomposition, known as Fourier series
(for periodic signals) or the Fourier transform
(for aperiodic signals).

When in the 1950’s techniques for broadcast-
ing audio and video over very high frequency
carriers emerged, electrical engineers found that
a purely static view (i.e. the steady state)
is insufficient. When modeling the effects of
printed board circuit layout for highest fre-
quency applications, the change of the spec-
trum over time can no longer be neglected. The
Laplace transform turned out as a useful tool
for modeling such dynamic environments. Still,
the Laplace transform was originally developed
to solve higher-order differential equations and
never has been adapted for modeling properties
of technical signals.

Our mission is to develop a “better” Fourier
transform for audio applications that considers
transient effect. Our novel spectral transform
turns out to be closely related to the Laplace
transform. For algorithmic approximation, we
derive a formula that is very similar to the slid-
ing window DF'T' technique. Our formula essen-
tially differs only in an additional decay factor
that smoothly fades out the past content of the
signal, rather than subtracting the signal con-
tent that falls off from the window, as the DFT
sliding window does.



1.1 Paper Outline

After reviewing the state of art (Sect. 2), we
explore generic characteristics of linear signal
processing at the example of a low pass filter
(Sect. 3). Thereupon, we highlight those char-
acteristics that the Fourier transform does not
respect by construction (Sect. 3.6). We conse-
quently modify the formula of the Fourier trans-
form to meet our desired characteristics, and
thus come up with a new transform, the spec-
tral transform (Sect. 4). For checking the san-
ity of our novel transform, we examine its basic
properties (Sect. 4.1). In particular, we prove
that our spectral transform boils down to the
Laplace transform combined with a linear trans-
form (Sect. 4.2). This way, we kill two birds with
one stone: firstly, on a sudden it becomes much
clearer, that in electrical engineering, it is indeed
often the right choice to use the Laplace trans-
form instead of Fourier transform; secondly, we
are much more confident that our spectral trans-
form works as expected, since it is strongly re-
lated to what electrical engineers have been do-
ing for half a century. Still, our goal is to exploit
the spectral transform for retrieving new or bet-
ter algorithms in signal processing. For this pur-
pose, we derive a recursive formula, that serves
as the pendant for the sliding window DFT re-
cursive formula (Sect. 4.3). We evaluate the
differences between the two formulas and their
impact (Sect. 5). Still, our work is far away
from being complete, since we expect the spec-
tral transform to eventually gain much broader
application (Sect. 6). In particular, we expect to
derive new or enhanced signal processing algo-
rithms (e.g. filters) on the basis of the spectral
transform. We close with a short summary of
our findings (Sect. 7).

2 State of the Art

The sliding window DFT algorithm [1; 2| im-
plements a discrete approximation of the Fourier
transform and delivers the coefficients for the se-
ries of the partials of a periodic wave. Since real
world acoustic signals are usually not periodic, a
window function is used to mask a frame of lim-
ited time and ignore the signal outside of this
time frame (Fig. 2a). Instead, the signal within
the frame is extrapolated by periodic continua-
tion suitable for the DFT (Fig. 2b). However,
the discontinuities at the continuation points
would add artificial harmonic content with a
base frequency determined by the size of the
window. Therefore, the signal is usually faded

out towards the window borders, e.g. by multi-
plying the signal with a Gauss distribution curve
(Fig. 2c).

The sliding window DFT works fairly well
for the static case: As long as the spectrum
of the signal changes slowly over time, it does
not much matter where exact the spectral anal-
ysis starts and where it ends. Moreover, assum-
ing a sufficiently long window size that covers
deep frequencies, the Gauss distribution curve
attenuates the amount of all frequencies almost
evenly. However, in the dynamic case, the slid-
ing window responds slowly to rapid changes in
the spectrum, since the Gaussian filter attenu-
ates particularly the most recent samples.

(@)

(b)

(©

Figure 2: Preparation of a Signal for DFT

On last year’s LAC, FFITCH [3; 4] presented
a Csound implementation of the sliding window
DFT based on the recursive function Fy11(n) =
(Fy(n) — fi + fron)e®™~. This function still
inherits the steady state assumption from the
Fourier transform. Our goal is to develop and
implement a transform for spectral analysis that
responds quickly to rapid changes and behaves
more closely to linear filters.

3 Case Study: RC Low Pass Filter

We need to know more about the properties
of signal spectra. Intuitively, we consider the
spectrum of a complex signal as decomposi-
tion of the signal into a weighted (possibly in-
finite) sum of primitive components (the spec-
tral lines). That is, more formally, the primitive
components are base vectors, and the complex
signal is a linear combination of them. There-
fore, there is a linear relation between signals
and spectra: if signal fi(¢) has spectrum S (¢)
and fo(t) has spectrum Sy(t), then we expect



fir2(t) == fi(t) + f2(t) to have the spectrum
Si19 (t) =8 (t) + SQ(t).

Consequently, we choose a linear filter to
study the characteristics of linear signal process-
ing. To keep mathematics feasible, we choose
a very simple linear filter. The probably most
simple yet non-trivial linear filter is the RC low
pass filter.

3.1 Filter Diagram

Fig. 3 shows the diagram of the electrical im-
plementation of an RC low pass filter with re-
sistor R and capacitor C. We denote in short
7 = RC if we do not want to differentiate be-
tween R and C. For further simplification, we
assume that the incoming signal U;, has neg-
ligible low impedance, and that the load con-
nected to the output of the filter has negligible
high impedance. In practice, this behavior can
be fairly approximated by adding amplifiers into
the signal flow.
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Figure 3: RC Low Pass Filter

3.2 Natural Response Function

We want to express the filter’s output sig-

nal Uyy(t) in terms of its input signal Uiy, (t).
With Uout() - Uln(t) - UR(t)a UR(t) =
RIR( )7 ( ) = IC( ) = dQC(t)/dt, and
Qc(t) = CUg(t) = CUgy(t), we get in sum-
mary Ugyt () = Uin(t) — M , that is

, 1

out (t) = ;(Uin(t) = Uout (t))

This is an ordinary linear differential equa-
tion of first order. A solution for this equation
can be found in standard literature on differen-
tial equations [5]: Assuming there is some initial
value Ugy(t), to < t1 given (i.e. the capacitor’s
charge at some earlier point in time), the equa-
tion has the only solution

t—tq

to—t 1 t1
0—%
Uout(tl) =€ 7 Uout(tO) + ;/ Uin(t)e T dt
to
(2)

Note that for computing Ugyt(t1) it is suffi-
cient to know the output Uy (to) at some ear-
lier point in time ty < ¢; and the input signal
in the range of time (to,¢1). That is, the capac-
itor’s charge represents all of the signal’s past
history as to what extent it is required for low
pass filtering.

For the special case ty — —o0, the equation
simplifies as follows:

1 1 t—ty
Unua(f1) = / Un(e=rdt (3)

—00

3.3 Steady State Transfer Function

We examine the transfer function of the RC
low pass by computing the natural response
of the filter when feeding a sine wave into its
input. As sine wave, we could use the func-
tion Uiy(t) = psin(¢t + ¢) with sine ampli-
tude p and phase shift ¢. However, since calcu-
lating with trigonometric functions is cumber-
some, we prefer the complex notation Uj,(t) =
p(isin(ét + @) + cos(Pt + ) = pe'(P+¢) Since
we examine the steady state, we do not want
to consider any initial value of the filter. Conse-
quently, we compute the transfer function based
on Eqn. 3 rather than on Eqn. 2:

1 [ . _
Uout (t1) = = / Pl e =t at

T — 0o
t=t1

_ lpew—tl/T [ T t(i¢:+1>]
-

e
ipT + 1

T t1 (i¢T+1)
—— <€ T
1T + 1
i(Ppt1+¢p)

t=—0o0

_ lpeiﬁo—tl/T

1

= ——pe
z'¢7'+1p

1
= WUin(tl) =...=

e—zarctan(¢7-)

= mUin(tl) (4)

That is, the signal is attenuated by factor

—1 .
1+ (¢7)? = and phase-shifted by arctan(¢r).
(The last step in the calculation comprises a
complex partial fraction expansion and some



other conversions, that we have omitted here for
space restrictions.)

Fig. 4 shows the input sine wave @ 1kHz and
the resulting steady state output sine wave for
7 = 3ms with observable decreased amplitude
and phase shift.
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Figure 4: RC Low Pass Steady State Transfer

3.4 Transient Effect
Imagine that after a long period of a null sig-

nal, a sine wave suddenly sets in. That is, we
examine the RC filter response to the function:

Un(t) = { 5" )

Since Uiy (t) = 0Vt < 0, the integral in Eqn. 3
is 0 Vt1 < 0, that is, Uout(tl) = 0 Vt; < 0. For
the remaining case t; > 0 we derive

ift >0,
otherwise.

1 -y (B

t
Uout(tl) = —-€er Uin(t)e;dt
T —00
1 -y [
— et sin(t)eﬁdt (6)
T 0
= ... (twice integration by parts) ...
_ 1 1 t=t1
= et [— cos(t)eé - —2sin(t)ei}
T T t=0
—t; 1 t1
- e%—3 sin(t)efdt. (7)
™ Jo

By isolating the integral in Eqns. 6 and 7,

it can be eliminated, leading to Ugw(t) =
TQLH(% sin(t) — cos(t) + e%t) for t > 0. In sum-
mary, we have

—t
sin(t)—7 cos(t)+71e T
cosltire Ty >
0 otherwise.
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Figure 5: RC Low Pass Transient Effect

Fig. 5 illustrates the transient effect: In the
steady state, the output signal is negative, when
the sine wave traverses the zero crossing up-
wards. However, when the sine wave suddenly
sets in, the charge of the capacitor is initially
zero rather than negative. Consequently, the
output signal starts somewhat too high, but ap-
proaches asymptotically to the steady state. In
Fig. 5, we additionally depict this output aber-
ration, that asymptotically drops to zero. Simi-
larly, the phase of the output signal approaches
asymptotically to the steady state.

3.5 Discretization

For algorithmic implementation of the RC low
pass, we assume that the input signal is approx-
imated by a discrete series of floating point val-
ues Um(to), Um(tl), Uin(tg), ey Uin(tn) that are
equidistant over time: ¢t} —tg =ty —t; = ... =
t, — thn_1 = At. Approximately, we assume

Uiniapprom(t) = Uin(ti)Vt S [ti, ti+1). Then,
from Eqn. 2 follows:
Uoutiapprom (tl )
to—t
=€ 7 ' Uoutiapprox(tO)
1 [t t—tq
+ - Uin_approx(t)e - dt
T to
- 1 =ty
—=e At/TUout_appTO:C(tO) + ; / Um(to)e .,-1 dt
to
_ Aty 1 t—t; 1t=t1
=€ At/ Uoutiapprom(tO) + Uin(tO); |:’7'€ Tl:|t .
=0
:e_At/TUout_approx (tO) + Uin (tO)(l - e_At/T)
:anut_approx(tO) + (1 - a)Uin(tO) (9)

for « = e Y7, Therein, w = 2nf = 1/7
represents the cut-off frequency f [Hz| of the low



pass and At the time [s| between two adjacent
samples.

For an even more precise approximation,
we can linearly interpolate Uiy appros(t),ti <
t < tiy1 between the adjacent samples
Uiniapprox(ti) = Uin(ti) and Uiniapprom(ti—i-l) =
Uin(ti41) rather than assuming Uin approz(t) =
Uin(;)Vt € [ti, t;v1). This way, we get

Uout_appro:c (tl)
to—t

=€ 7 Uout_approx(tO)

1 [h
+ —/ (Uin(t0)+
T Jto
t—1t -
" (Unn(t1) - Uin(to)))e = dt
1 —to

=... (quite lengthy calculation) ...

to—t1

T(e™ 7 _1)>Uin(t0)

=€ 7 Uout_approx(tO)
t —to

to—t1
— e T +

+ (1 + T(eTto_l)> Un(t))  (10)

for a marginally better approximation.

3.6 Discussion

Having the steady state transfer function in
mind, the RC low pass filter can be viewed as
a linear operation not only on the signal itself,
but also on its spectrum. Performing such lin-
ear operations is often realized by transforming
a signal into frequency space, then applying the
operation, and then transforming back to signal
space. This is, where the Fourier integral (and
its inverse) is typically used:

“+oo
F(F(1),6) == / fHetmodr (1)

—00
However, the RC low pass filter function
1 [ .

Uout(tl) = ; Uin(t)e "’tl dt

—00

differs from the Fourier integral in some sig-
nificant properties:

Time as Parameter. The Fourier trans-
form is applied on an input function as a whole
and has a frequency as parameter, but not a

point of time. That is, the Fourier transform
assumes a static spectrum that does not change
over time. Instead, a window is introduced and
the signal in this window is periodically extrap-
olated to retrieve a spectrum that is bound to a
limited range in time. In contrast, the RC low
pass filter output is a function over time.

Past Time Contribution. Since the
Fourier transform is designed to compute the
static spectrum over the complete signal, it re-
quires the future course of the signal. The win-
dow technique constructs a future signal by pe-
riodically extrapolating the signal. In contrast,
the output of the RC low pass filter can for some
point t = ¢; of time be sufficiently expressed in
terms of a function over the input signal rang-
ing from t = —oo to t = t1. It is not necessary
to know or extrapolate the future course of the
signal.

Exponential Decay. The Fourier trans-
form weights the input function with factor
2Pt = w(t). Since |w(t)] = 1Vt, ¢ € R, all
function values of the signal contribute equally
to the transform, regardless of what point of
time they represent. In contrast, the signal’s
contribution to the RC low pass output decays
exponentially over time: the signal’s recent his-
tory has much more impact on the filter output
than the signal’s history long ago.

4 The Spectral Transform

We present and examine the spectral transform
that modifies the Fourier transform such that it
eliminates all deficiencies discussed in Sect. 3.6:

S(f(t), ¢, to) :=

(u—2mi)p [ f(t)el 20— 0)qr  (12)

The parameter ¢y represents the point of time
of the spectrum. The upper bound of the in-
tegral is tp, such that the future signal is not
involved. Lastly, the e function, that performs
only a complex rotation on the input signal in
the Fourier transform, is augmented with the
positive real value p, such that the signal is also
attenuated to honor exponential decay as we ob-
served in the RC low pass. The transform is
scaled by factor (u — 27mi)¢ to simplify some of
the subsequent expressions.

For simplicity, we often normalize f(t) such
that ¢y becomes 0:



S(f(t),¢) ==
0
(4 — 20 / F)eB=2motq (13)

The normalized form is related to the full form
as follows:

S(f(t),¢) = S(f(t —to), d,t0).  (14)

Similar to the recursive RC low pass (Eqn. 2)
expression, the spectral transform can be ex-
pressed recursively as follows:

S(f(t): ¢, t1)
to )
" / 2m0—1) (1)t

t1 )
+ (u—2mi)g | eW2mIo=t) (1) dt
to
—e(p—2mi)(to—t1)

to )
(1 — Qm')qg/ e(“_2“)¢(t_t0)f(t)dt

t1 )
+ (u—2mi)g | eH2me=t) r(1)dt
to

—e(k=2m)olo IS (£(t), 6, o)
t1 )
+ (p—2mi)p | W2t r()dt. (15)
to
4.1 Basic Properties

We give some basic properties of the spectral
transform. For space restrictions, we omit all
(not so difficult) proofs.

Linearity.

S(aifi(t) + azf2(t), ¢, t0) =
a1S(f1(t), d,to) + a2S(fa(t), d,t0).  (16)

Convolution.
S((fl * f2)to (t)7 b, tO) =

%S(fl(t),ﬁb,—to)S(f2(t),¢,t0)‘ (17)

Differentiation.

S(f™(t), ¢, t0) =
((2mi — )d)"S(f (1), ¢, t0)+

n—1
276y ((2mi — )" I [V (to).  (18)
j=0

Time Shifting.

S(f(t+8).6t0) =
e~ 2T S(F(¢), b, 1)+

3 .
(u—2mi)p e(“_2m)¢(’"_€_t°)f(r)dr (19)

to

VEeR, > 0.
Scaling.

S0, 2 t0) = S(o(t).0.10), (20)

with g(t) = f((t — to)a + to)Va € R,a > 0.
Frequency Shifting.

S(f(t), ¢+ a,to) =

B0 (R (), 6,10). (21)

4.2 Relation to Laplace Transform

The spectral transform is closely related to the
Laplace transform:

o
(1 —2mi)¢
for s = (u — 2mi)p, r = —t, and g(r) = f(¢).
Proof.

L(g(r),s) = (S(f(#),9)  (22)

£(g(r).s) = /0 T e g(rydr

= / e_(“_2“)¢7’g(r)dr
0

= —/_ e(“_zm)d’tg(r)dt
0
0 .

:/ W20t o (1) dt

0 .
= / eH=2m00t £ () dt

1

= m(s(f(t)yé))-

This close relation to Laplace explains on the
one hand why electric engineers are so success-
ful in deploying the Laplace transform (although
our results suggests that they require some ad-
ditional pre- and post-transform). On the other
hand, we are now confident that we are on
the right track with our transform, since we
inherit those important features from Laplace,



that electric engineers claim to be essential when
considering the non-steady state.

We also can now compute the inverse spectral
transform from the inverse Laplace transform by
substituting r = —t, g(r) = f(t), s = (u—2mi)o,
ds = (u — 2mi)dg:

1 c+100 o
o) =5 [ el s
e [ e (st opas
2mi c—100 (N - 27TZ)¢ ’
£t =1 / T 2miya(—)
_27TZ c—100
1
—(S(f(t), 0 — 2mi)d
(=5 S0 — 2mi)0
:i ctico e—(u—27ri)¢t (S(f(t)7 ¢))d¢
2mi c—100 ¢
(23)
Transfer Function for sin(at).
S(sin(at), ) evaluates (after twice integra-
tion by parts) to (u__(%% Alternatively,

knowing from Laplace transform tables that

L(g(r),s) = % for g(r) = —sin(ar),

with Eqn. 22, s = (u — 2mi)g, r = —t

and ¢g(r) = —sin(ar) = —sm(( t) =

sin(at) = f(t), we easily get the same result
' —(u-2ri)oa

S(sin(at), )—M—gm)w

6
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Figure 6: Spectral Transform of sin(2t)

Fig. 6 shows the absolute values of
S(sin(at), ¢) for various g and o = 27. A
high wvalue for p increases the sharpness of
the frequency peak, but also results in faster
decay of the signal. After all, we may tune g
such that the peaks fit well into a given set of
discrete frequency lines.

4.3 Discretization

Similar to the RC low pass, we discretize the
spectral transform to derive an algorithmic ap-
proximation. For two successive samples at
times to and ¢ with At = ¢1 — to we derive

S(f(t), ¢, t1) = 2TIORLS(f(t), ¢, t0)+
(1 — e =2m098t) £(1g),  (24)

f(t()) Vi :tg <t <t.

Proof. The discretization follows immediately
from the recursive form of the spectral transform
(Eqn. 15):

assuming that f(t) =

S(f(t), ¢,t1)

—e(p=2mi)¢(to—t1)

S(f(t)a ¢7 tO)
" e(u—2ﬂi)¢(t—t1)f(t)dt

to

= WTITIORLS ([ (1), . to)
eln=2rp(t—) ="
(1 —2mi)g
= UTBTORLS (f(1), ¢, o)
+ F(to)(1 — emlim2mdeaty

+ (u — 2mi)¢

+ (n = 2mi)o f (to) [

t=to

(25)

Interestingly, Douglas and Soh [6] scale the
signal in their sliding window DFT implementa-
tion with factor 0 < \ < 0, that resembles our
el for t < 0. Still, their focus is on numerical
stability of the DFT rather than transient effect.
Also, given an L-sized window, they remove the
sample that falls off the sliding window, scaled
by AL, Instead, we do not have a limited win-
dow size, such that limy_, AL = 0 and there is
nothing to remove.

5 Evaluation

For evaluating our work, we developed a DSP
library on a Linux system with JDK 1.6 that
implements the spectral transform. The source
code is available at http://www.soundpaint.
org/spectral-transform/.

Unfortunately, we have not yet developed a
sufficiently persuasive implementation of the in-
verse spectral transform, presumably for issues
similar to that of the inverse sliding DFT |[3].
Instead, we compare the graphical representa-
tion of both, the sliding DFT and our spectral



transform (Fig. 8, 9) for a slap noise (Fig. 7)
recorded at 44.1kHz. We chose a DFT window
size of N := 512, and log(p) := (N —1)/N.
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Figure 7: Slap Noise

Figure 9: Spectral Transform of Slap Noise

No attempt was made to apply the Gaus-
sian filter to either DFT or spectral transform
(Sect. 2), hence the sliding DFT also reacts
promptly to rapid changes, as we demanded.
However, the DFT tends to produce overly
sharp lines, that lead to a speckled spectrum.
Moreover, when the initial samples fall off from
the DFT window, the initial spectrum peak is
echoed. In contrast, our spectral transform pro-
duces more balanced frequency areas of excita-
tion and fades out smoothly, while the initial
peak is even broader than in the DFT.

6 Future Work

The presumably most annoying issue is that our
transform is still missing its discrete inverse im-
plementation. Signal manipulation in the fre-
quency domain appears only useful, when the
modified signal can be reconstructed from the

frequency domain. We are confident that we will
find an adequate solution, since our transform is
closely related to sliding DFT and Laplace, both
of which are known to be invertible.

7 Conclusion

Originally inspired by the wave theory of light,
we developed our spectral transform and im-
plemented it under Linux as a small Java li-
brary for the field of audio signal processing,
but expect broad applicability in various fields of
physics. The transform shifts uncertainty from
signal to frequency domain by constructing a dy-
namically adapting spectrum for a any sharply
defined signal at any sharp point of time. Com-
pared with DFT, the spectral transform gives
more natural results in environments when the
spectrum changes rapidly. The drawback is that
it lacks of determining sharp spectral lines, as
can be constructed from steady state signals.
This behavior is a natural tribute to the dynami-
cally changing spectrum. Rather, our transform
encounters the full signal history with exponen-
tial decay, not just the steady state extrapola-
tion of a signal section, as the DFT does.
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