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Abstra
tSignal pro
essing with dis
rete Fourier transform(DFT) works well in standard settings, but is unsat-isfying for rapid 
hanges in signal spe
tra. We illus-trate and analyze this phenomenon, develop a noveltransform and prove its 
lose relation to the Lapla
etransform. We deploy our transform for derivinga repla
ement for the sliding window DFT. Ourapproa
h features transient e�e
t and hen
e showsmore natural response to rapid spe
tral 
hanges.Keywordssignal pro
essing, DFT, sliding window te
hnique,spe
tral analysis1 Introdu
tionIn the 17th 
entury, Christiaan Huygens postu-lated that ea
h point of an advan
ing wave front
an be viewed as sour
e of a new wave (Fig. 1).
Figure 1: Cutting Out an Elementary Wavefrom a Wave Front with an Extremely NarrowSlitThis prin
iple together with the prin
iple ofsuperposition suggests that a 
omplex wave 
anbe de
omposed into elementary waves. How-ever, de
omposition is generally ambiguous, asthe following equation demonstrates:
cos(x) + cos(y) = 2 cos(

x − y

2
) cos(

x + y

2
) (1)The terms on either side of the equation repre-sent di�erent de
ompositions for the same wave.On the left, we have a de
omposition into twowaves of di�erent frequen
ies x and y, but bothwith an amplitude of 1 that remains 
onstantover time. The term on the right 
an be in-terpreted as a single wave with frequen
y x+y

2

and with amplitude 2 cos(x−y
2 ), i.e. with an am-plitude that 
hanges periodi
ally over time at afrequen
y of x − y. In a
ousti
s, the interpre-tation of this equation is known under the termbeats: If two very similar voi
es sound at almostthe same pit
h, the e�e
t is equivalent to havingone of the voi
es sounding with a loudness thatos
illates at very low frequen
y.If we assume that the amplitudes of the wavesremain 
onstant over time, we de
ide for theleft hand side of the equation. It was Fourierwho formally proved that, with this additionalassumption of steady state, there is indeed aunique de
omposition, known as Fourier series(for periodi
 signals) or the Fourier transform(for aperiodi
 signals).When in the 1950's te
hniques for broad
ast-ing audio and video over very high frequen
y
arriers emerged, ele
tri
al engineers found thata purely stati
 view (i.e. the steady state)is insu�
ient. When modeling the e�e
ts ofprinted board 
ir
uit layout for highest fre-quen
y appli
ations, the 
hange of the spe
-trum over time 
an no longer be negle
ted. TheLapla
e transform turned out as a useful toolfor modeling su
h dynami
 environments. Still,the Lapla
e transform was originally developedto solve higher-order di�erential equations andnever has been adapted for modeling propertiesof te
hni
al signals.Our mission is to develop a �better� Fouriertransform for audio appli
ations that 
onsiderstransient e�e
t. Our novel spe
tral transformturns out to be 
losely related to the Lapla
etransform. For algorithmi
 approximation, wederive a formula that is very similar to the slid-ing window DFT te
hnique. Our formula essen-tially di�ers only in an additional de
ay fa
torthat smoothly fades out the past 
ontent of thesignal, rather than subtra
ting the signal 
on-tent that falls o� from the window, as the DFTsliding window does.



1.1 Paper OutlineAfter reviewing the state of art (Se
t. 2), weexplore generi
 
hara
teristi
s of linear signalpro
essing at the example of a low pass �lter(Se
t. 3). Thereupon, we highlight those 
har-a
teristi
s that the Fourier transform does notrespe
t by 
onstru
tion (Se
t. 3.6). We 
onse-quently modify the formula of the Fourier trans-form to meet our desired 
hara
teristi
s, andthus 
ome up with a new transform, the spe
-tral transform (Se
t. 4). For 
he
king the san-ity of our novel transform, we examine its basi
properties (Se
t. 4.1). In parti
ular, we provethat our spe
tral transform boils down to theLapla
e transform 
ombined with a linear trans-form (Se
t. 4.2). This way, we kill two birds withone stone: �rstly, on a sudden it be
omes mu
h
learer, that in ele
tri
al engineering, it is indeedoften the right 
hoi
e to use the Lapla
e trans-form instead of Fourier transform; se
ondly, weare mu
h more 
on�dent that our spe
tral trans-form works as expe
ted, sin
e it is strongly re-lated to what ele
tri
al engineers have been do-ing for half a 
entury. Still, our goal is to exploitthe spe
tral transform for retrieving new or bet-ter algorithms in signal pro
essing. For this pur-pose, we derive a re
ursive formula, that servesas the pendant for the sliding window DFT re-
ursive formula (Se
t. 4.3). We evaluate thedi�eren
es between the two formulas and theirimpa
t (Se
t. 5). Still, our work is far awayfrom being 
omplete, sin
e we expe
t the spe
-tral transform to eventually gain mu
h broaderappli
ation (Se
t. 6). In parti
ular, we expe
t toderive new or enhan
ed signal pro
essing algo-rithms (e.g. �lters) on the basis of the spe
traltransform. We 
lose with a short summary ofour �ndings (Se
t. 7).2 State of the ArtThe sliding window DFT algorithm [1; 2℄ im-plements a dis
rete approximation of the Fouriertransform and delivers the 
oe�
ients for the se-ries of the partials of a periodi
 wave. Sin
e realworld a
ousti
 signals are usually not periodi
, awindow fun
tion is used to mask a frame of lim-ited time and ignore the signal outside of thistime frame (Fig. 2a). Instead, the signal withinthe frame is extrapolated by periodi
 
ontinua-tion suitable for the DFT (Fig. 2b). However,the dis
ontinuities at the 
ontinuation pointswould add arti�
ial harmoni
 
ontent with abase frequen
y determined by the size of thewindow. Therefore, the signal is usually faded

out towards the window borders, e.g. by multi-plying the signal with a Gauss distribution 
urve(Fig. 2
).The sliding window DFT works fairly wellfor the stati
 
ase: As long as the spe
trumof the signal 
hanges slowly over time, it doesnot mu
h matter where exa
t the spe
tral anal-ysis starts and where it ends. Moreover, assum-ing a su�
iently long window size that 
oversdeep frequen
ies, the Gauss distribution 
urveattenuates the amount of all frequen
ies almostevenly. However, in the dynami
 
ase, the slid-ing window responds slowly to rapid 
hanges inthe spe
trum, sin
e the Gaussian �lter attenu-ates parti
ularly the most re
ent samples.
(a)

(b)

(c)Figure 2: Preparation of a Signal for DFTOn last year's LAC, ffit
h [3; 4℄ presenteda Csound implementation of the sliding windowDFT based on the re
ursive fun
tion Ft+1(n) =

(Ft(n) − ft + ft+N )e2πi n
N . This fun
tion stillinherits the steady state assumption from theFourier transform. Our goal is to develop andimplement a transform for spe
tral analysis thatresponds qui
kly to rapid 
hanges and behavesmore 
losely to linear �lters.3 Case Study: RC Low Pass FilterWe need to know more about the propertiesof signal spe
tra. Intuitively, we 
onsider thespe
trum of a 
omplex signal as de
omposi-tion of the signal into a weighted (possibly in-�nite) sum of primitive 
omponents (the spe
-tral lines). That is, more formally, the primitive
omponents are base ve
tors, and the 
omplexsignal is a linear 
ombination of them. There-fore, there is a linear relation between signalsand spe
tra: if signal f1(t) has spe
trum S1(t)and f2(t) has spe
trum S2(t), then we expe
t



f1+2(t) := f1(t) + f2(t) to have the spe
trum
S1+2(t) := S1(t) + S2(t).Consequently, we 
hoose a linear �lter tostudy the 
hara
teristi
s of linear signal pro
ess-ing. To keep mathemati
s feasible, we 
hoosea very simple linear �lter. The probably mostsimple yet non-trivial linear �lter is the RC lowpass �lter.3.1 Filter DiagramFig. 3 shows the diagram of the ele
tri
al im-plementation of an RC low pass �lter with re-sistor R and 
apa
itor C. We denote in short
τ = RC if we do not want to di�erentiate be-tween R and C. For further simpli�
ation, weassume that the in
oming signal Uin has neg-ligible low impedan
e, and that the load 
on-ne
ted to the output of the �lter has negligiblehigh impedan
e. In pra
ti
e, this behavior 
anbe fairly approximated by adding ampli�ers intothe signal �ow.

IR

UR

IC

UCUin Uout

Figure 3: RC Low Pass Filter3.2 Natural Response Fun
tionWe want to express the �lter's output sig-nal Uout(t) in terms of its input signal Uin(t).With Uout(t) = Uin(t) − UR(t), UR(t) =
RIR(t), IR(t) = IC(t) = dQC(t)/dt, and
QC(t) = CUC(t) = CUout(t), we get in sum-mary Uout(t) = Uin(t) − τ dUout(t)

dt , that is
U′

out(t) =
1

τ
(Uin(t) − Uout(t)).This is an ordinary linear di�erential equa-tion of �rst order. A solution for this equation
an be found in standard literature on di�eren-tial equations [5℄: Assuming there is some initialvalue Uout(t0), t0 ≤ t1 given (i.e. the 
apa
itor's
harge at some earlier point in time), the equa-tion has the only solution

Uout(t1) = e
t0−t1

τ Uout(t0) +
1

τ

∫ t1

t0

Uin(t)e
t−t1

τ dt(2)Note that for 
omputing Uout(t1) it is su�-
ient to know the output Uout(t0) at some ear-lier point in time t0 < t1 and the input signalin the range of time (t0, t1). That is, the 
apa
-itor's 
harge represents all of the signal's pasthistory as to what extent it is required for lowpass �ltering.For the spe
ial 
ase t0 → −∞, the equationsimpli�es as follows:
Uout(t1) =

1

τ

∫ t1

−∞

Uin(t)e
t−t1

τ dt (3)3.3 Steady State Transfer Fun
tionWe examine the transfer fun
tion of the RClow pass by 
omputing the natural responseof the �lter when feeding a sine wave into itsinput. As sine wave, we 
ould use the fun
-tion Uin(t) = ρ sin(φt + ϕ) with sine ampli-tude ρ and phase shift ϕ. However, sin
e 
al
u-lating with trigonometri
 fun
tions is 
umber-some, we prefer the 
omplex notation Uin(t) =

ρ(i sin(φt + ϕ) + cos(φt + ϕ)) = ρei(φt+ϕ). Sin
ewe examine the steady state, we do not wantto 
onsider any initial value of the �lter. Conse-quently, we 
ompute the transfer fun
tion basedon Eqn. 3 rather than on Eqn. 2:
Uout(t1) =

1

τ

∫ t1

−∞

ρei(φt+ϕ)e
t−t1

τ dt

=
1

τ
ρeiϕ−t1/τ

[

τ

iφτ + 1
e

t(iφτ+1)
τ

]t=t1

t=−∞

=
1

τ
ρeiϕ−t1/τ τ

iφτ + 1
e

t1(iφτ+1)
τ

=
1

iφτ + 1
ρei(φt1+ϕ)

=
1

iφτ + 1
Uin(t1) = . . . =

=
e−iarctan(φτ)

√

1 + (φτ)2
Uin(t1) (4)That is, the signal is attenuated by fa
tor

√

1 + (φτ)2
−1 and phase-shifted by arctan(φτ).(The last step in the 
al
ulation 
omprises a
omplex partial fra
tion expansion and some



other 
onversions, that we have omitted here forspa
e restri
tions.)Fig. 4 shows the input sine wave � 1kHz andthe resulting steady state output sine wave for
τ = 3ms with observable de
reased amplitudeand phase shift.

-1

-0.5

 0

 0.5

 1

-1  0  1  2  3

S
ig

na
l V

al
ue

Time [ms]

signal output

-1

-0.5

 0

 0.5

 1

-1  0  1  2  3

S
ig

na
l V

al
ue

Time [ms]

signal inputFigure 4: RC Low Pass Steady State Transfer3.4 Transient E�e
tImagine that after a long period of a null sig-nal, a sine wave suddenly sets in. That is, weexamine the RC �lter response to the fun
tion:
Uin(t) := {

sin(t) if t ≥ 0,
0 otherwise. (5)Sin
e Uin(t) = 0∀t < 0, the integral in Eqn. 3is 0 ∀t1 < 0, that is, Uout(t1) = 0 ∀t1 < 0. Forthe remaining 
ase t1 ≥ 0 we derive

Uout(t1) =
1

τ
e

−t1
τ

∫ t1

−∞

Uin(t)e
t
τ dt

=
1

τ
e

−t1
τ

∫ t1

0
sin(t)e

t
τ dt (6)

= . . . (twi
e integration by parts) . . .

= −e
−t1

τ

[

1

τ
cos(t)e

t
τ −

1

τ2
sin(t)e

t
τ

]t=t1

t=0

− e
−t1

τ
1

τ3

∫ t1

0
sin(t)e

t
τ dt. (7)By isolating the integral in Eqns. 6 and 7,it 
an be eliminated, leading to Uout(t) =

τ
τ2+1

( 1
τ sin(t) − cos(t) + e

−t
τ ) for t ≥ 0. In sum-mary, we have

Uout(t) = {
sin(t)−τ cos(t)+τe

−t
τ

τ2+1 ∀t ≥ 0,

0 otherwise. (8)
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tFig. 5 illustrates the transient e�e
t: In thesteady state, the output signal is negative, whenthe sine wave traverses the zero 
rossing up-wards. However, when the sine wave suddenlysets in, the 
harge of the 
apa
itor is initiallyzero rather than negative. Consequently, theoutput signal starts somewhat too high, but ap-proa
hes asymptoti
ally to the steady state. InFig. 5, we additionally depi
t this output aber-ration, that asymptoti
ally drops to zero. Simi-larly, the phase of the output signal approa
hesasymptoti
ally to the steady state.3.5 Dis
retizationFor algorithmi
 implementation of the RC lowpass, we assume that the input signal is approx-imated by a dis
rete series of �oating point val-ues Uin(t0), Uin(t1), Uin(t2), . . . , Uin(tn) that areequidistant over time: t1 − t0 = t2 − t1 = . . . =
tn − tn−1 = ∆t. Approximately, we assume
Uin_approx(t) ≡ Uin(ti)∀t ∈ [ti, ti+1). Then,from Eqn. 2 follows:

Uout_approx(t1)

=e
t0−t1

τ Uout_approx(t0)

+
1

τ

∫ t1

t0

Uin_approx(t)e
t−t1

τ dt

=e−∆t/τUout_approx(t0) +
1

τ

∫ t1

t0

Uin(t0)e
t−t1

τ dt

=e−∆t/τUout_approx(t0) + Uin(t0)
1

τ

[

τe
t−t1

τ

]t=t1

t=t0

=e−∆t/τUout_approx(t0) + Uin(t0)(1 − e−∆t/τ )

=αUout_approx(t0) + (1 − α)Uin(t0) (9)for α = e−∆t/τ . Therein, ω = 2πf = 1/τrepresents the 
ut-o� frequen
y f [Hz℄ of the low



pass and ∆t the time [s℄ between two adja
entsamples.For an even more pre
ise approximation,we 
an linearly interpolate Uin_approx(t), ti ≤
t ≤ ti+1 between the adja
ent samples
Uin_approx(ti) = Uin(ti) and Uin_approx(ti+1) =
Uin(ti+1) rather than assuming Uin_approx(t) ≡
Uin(ti)∀t ∈ [ti, ti+1). This way, we get

Uout_approx(t1)

=e
t0−t1

τ Uout_approx(t0)

+
1

τ

∫ t1

t0

(Uin(t0)+

t − t0
t1 − t0

(Uin(t1) − Uin(t0)))e
t−t1

τ dt

= . . . (quite lengthy 
al
ulation) . . .

=e
t0−t1

τ Uout_approx(t0)

−

(

e
t0−t1

τ +
τ(e

t0−t1
τ − 1)

t1 − t0

)

Uin(t0)

+

(

1 +
τ(e

t0−t1
τ − 1)

t1 − t0

)

Uin(t1) (10)for a marginally better approximation.3.6 Dis
ussionHaving the steady state transfer fun
tion inmind, the RC low pass �lter 
an be viewed asa linear operation not only on the signal itself,but also on its spe
trum. Performing su
h lin-ear operations is often realized by transforminga signal into frequen
y spa
e, then applying theoperation, and then transforming ba
k to signalspa
e. This is, where the Fourier integral (andits inverse) is typi
ally used:
F(f(t), φ) :=

∫ +∞

−∞

f(t)e−2πiφtdt (11)However, the RC low pass �lter fun
tion
Uout(t1) =

1

τ

∫ t1

−∞

Uin(t)e
t−t1

τ dtdi�ers from the Fourier integral in some sig-ni�
ant properties:Time as Parameter. The Fourier trans-form is applied on an input fun
tion as a wholeand has a frequen
y as parameter, but not a

point of time. That is, the Fourier transformassumes a stati
 spe
trum that does not 
hangeover time. Instead, a window is introdu
ed andthe signal in this window is periodi
ally extrap-olated to retrieve a spe
trum that is bound to alimited range in time. In 
ontrast, the RC lowpass �lter output is a fun
tion over time.Past Time Contribution. Sin
e theFourier transform is designed to 
ompute thestati
 spe
trum over the 
omplete signal, it re-quires the future 
ourse of the signal. The win-dow te
hnique 
onstru
ts a future signal by pe-riodi
ally extrapolating the signal. In 
ontrast,the output of the RC low pass �lter 
an for somepoint t = t1 of time be su�
iently expressed interms of a fun
tion over the input signal rang-ing from t = −∞ to t = t1. It is not ne
essaryto know or extrapolate the future 
ourse of thesignal.Exponential De
ay. The Fourier trans-form weights the input fun
tion with fa
tor
e2πiφt =: w(t). Sin
e |w(t)| = 1∀t, φ ∈ R, allfun
tion values of the signal 
ontribute equallyto the transform, regardless of what point oftime they represent. In 
ontrast, the signal's
ontribution to the RC low pass output de
aysexponentially over time: the signal's re
ent his-tory has mu
h more impa
t on the �lter outputthan the signal's history long ago.4 The Spe
tral TransformWe present and examine the spe
tral transformthat modi�es the Fourier transform su
h that iteliminates all de�
ien
ies dis
ussed in Se
t. 3.6:

S(f(t), φ, t0) :=

(µ − 2πi)φ

∫ t0

−∞

f(t)e(µ−2πi)φ(t−t0)dt (12)The parameter t0 represents the point of timeof the spe
trum. The upper bound of the in-tegral is t0, su
h that the future signal is notinvolved. Lastly, the e fun
tion, that performsonly a 
omplex rotation on the input signal inthe Fourier transform, is augmented with thepositive real value µ, su
h that the signal is alsoattenuated to honor exponential de
ay as we ob-served in the RC low pass. The transform iss
aled by fa
tor (µ − 2πi)φ to simplify some ofthe subsequent expressions.For simpli
ity, we often normalize f(t) su
hthat t0 be
omes 0:



S(f(t), φ) :=

(µ − 2πi)φ

∫ 0

−∞

f(t)e(µ−2πi)φtdt. (13)The normalized form is related to the full formas follows:
S(f(t), φ) = S(f(t − t0), φ, t0). (14)Similar to the re
ursive RC low pass (Eqn. 2)expression, the spe
tral transform 
an be ex-pressed re
ursively as follows:

S(f(t), φ, t1)

=(µ − 2πi)φ

∫ t0

−∞

e(µ−2πi)φ(t−t1)f(t)dt

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt

=e(µ−2πi)φ(t0−t1)

(µ − 2πi)φ

∫ t0

−∞

e(µ−2πi)φ(t−t0)f(t)dt

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt

=e(µ−2πi)φ(t0−t1)S(f(t), φ, t0)

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt. (15)4.1 Basi
 PropertiesWe give some basi
 properties of the spe
traltransform. For spa
e restri
tions, we omit all(not so di�
ult) proofs.Linearity.
S(a1f1(t) + a2f2(t), φ, t0) =

a1S(f1(t), φ, t0) + a2S(f2(t), φ, t0). (16)Convolution.
S((f1 ∗ f2)t0(t), φ, t0) =

1

2πφ
S(f1(t), φ,−t0)S(f2(t), φ, t0). (17)Di�erentiation.

S(f (n)(t), φ, t0) =

((2πi − µ)φ)nS(f (0)(t), φ, t0)+

2πφ

n−1
∑

j=0

((2πi − µ)φ)n−1−jf (j)(t0). (18)

Time Shifting.
S(f(t + ξ), φ, t0) =

e−(µ−2πi)φξS(f(t), φ, t0)+

(µ − 2πi)φ

∫ ξ

t0

e(µ−2πi)φ(r−ξ−t0)f(r)dr (19)
∀ξ ∈ R, ξ ≥ 0.S
aling.

S(f(t),
φ

a
, t0) = S(g(t), φ, t0), (20)with g(t) = f((t − t0)a + t0)∀a ∈ R, a > 0.Frequen
y Shifting.

S(f(t), φ + α, t0) =

φ + α

φ
S(e(µ−2πi)α(t−t0)f(t), φ, t0). (21)4.2 Relation to Lapla
e TransformThe spe
tral transform is 
losely related to theLapla
e transform:

L(g(r), s) =
1

(µ − 2πi)φ
(S(f(t), φ)) (22)for s = (µ − 2πi)φ, r = −t, and g(r) ≡ f(t).Proof.

L(g(r), s) =

∫

∞

0
e−srg(r)dr

=

∫

∞

0
e−(µ−2πi)φrg(r)dr

= −

∫

−∞

0
e(µ−2πi)φtg(r)dt

=

∫ 0

−∞

e(µ−2πi)φtg(r)dt

=

∫ 0

−∞

e(µ−2πi)φtf(t)dt

=
1

(µ − 2πi)φ
(S(f(t), φ)).This 
lose relation to Lapla
e explains on theone hand why ele
tri
 engineers are so su

ess-ful in deploying the Lapla
e transform (althoughour results suggests that they require some ad-ditional pre- and post-transform). On the otherhand, we are now 
on�dent that we are onthe right tra
k with our transform, sin
e weinherit those important features from Lapla
e,



that ele
tri
 engineers 
laim to be essential when
onsidering the non-steady state.We also 
an now 
ompute the inverse spe
traltransform from the inverse Lapla
e transform bysubstituting r = −t, g(r) = f(t), s = (µ−2πi)φ,
ds = (µ − 2πi)dφ:
g(r) =

1

2πi

∫ c+i∞

c−i∞
esrL(g(r), s)ds

=
1

2πi

∫ c+i∞

c−i∞
esr 1

(µ − 2πi)φ
(S(f(t), φ))ds

f(t) =
1

2πi

∫ c+i∞

c−i∞
e(µ−2πi)φ(−t)

(
1

(µ − 2πi)φ
(S(f(t), φ)))(µ − 2πi)dφ

=
1

2πi

∫ c+i∞

c−i∞
e−(µ−2πi)φt (S(f(t), φ))

φ
dφ(23)Transfer Fun
tion for sin(αt).

S(sin(αt), φ) evaluates (after twi
e integra-tion by parts) to −(µ−2πi)φα
(µ−2πi)2φ2+α2 . Alternatively,knowing from Lapla
e transform tables that

L(g(r), s) = −α
s2+α2 for g(r) = − sin(αr),with Eqn. 22, s = (µ − 2πi)φ, r = −tand g(r) = − sin(αr) = − sin(α(−t)) =

sin(αt) = f(t), we easily get the same result
S(sin(αt), φ) = −(µ−2πi)φα

(µ−2πi)2φ2+α2 .
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u=2.0Figure 6: Spe
tral Transform of sin(2πt)Fig. 6 shows the absolute values of
S(sin(αt), φ) for various µ and α = 2π. Ahigh value for µ in
reases the sharpness ofthe frequen
y peak, but also results in fasterde
ay of the signal. After all, we may tune µsu
h that the peaks �t well into a given set ofdis
rete frequen
y lines.

4.3 Dis
retizationSimilar to the RC low pass, we dis
retize thespe
tral transform to derive an algorithmi
 ap-proximation. For two su

essive samples attimes t0 and t1 with ∆t = t1 − t0 we derive
S(f(t), φ, t1) =e−(µ−2πi)φ∆tS(f(t), φ, t0)+

(1 − e−(µ−2πi)φ∆t)f(t0), (24)assuming that f(t) ≡ f(t0) ∀t : t0 ≤ t < t1.Proof. The dis
retization follows immediatelyfrom the re
ursive form of the spe
tral transform(Eqn. 15):
S(f(t), φ, t1)

=e(µ−2πi)φ(t0−t1)S(f(t), φ, t0)

+ (µ − 2πi)φ

∫ t1

t0

e(µ−2πi)φ(t−t1)f(t)dt

=e−(µ−2πi)φ∆tS(f(t), φ, t0)

+ (µ − 2πi)φf(t0)

[

e(µ−2πi)φ(t−t1)

(µ − 2πi)φ

]t=t1

t=t0

=e−(µ−2πi)φ∆tS(f(t), φ, t0)

+ f(t0)(1 − e−(µ−2πi)φ∆t) (25)Interestingly, Douglas and Soh [6℄ s
ale thesignal in their sliding window DFT implementa-tion with fa
tor 0 ≪ λ̂ < 0, that resembles our
eµφt for t < 0. Still, their fo
us is on numeri
alstability of the DFT rather than transient e�e
t.Also, given an L-sized window, they remove thesample that falls o� the sliding window, s
aledby λ̂L. Instead, we do not have a limited win-dow size, su
h that limL→∞ λ̂L = 0 and there isnothing to remove.5 EvaluationFor evaluating our work, we developed a DSPlibrary on a Linux system with JDK 1.6 thatimplements the spe
tral transform. The sour
e
ode is available at http://www.soundpaint.org/spe
tral-transform/.Unfortunately, we have not yet developed asu�
iently persuasive implementation of the in-verse spe
tral transform, presumably for issuessimilar to that of the inverse sliding DFT [3℄.Instead, we 
ompare the graphi
al representa-tion of both, the sliding DFT and our spe
tral



transform (Fig. 8, 9) for a slap noise (Fig. 7)re
orded at 44.1kHz. We 
hose a DFT windowsize of N := 512, and log(µ) := (N − 1)/N .

Figure 7: Slap Noise
Figure 8: Sliding DFT of Slap Noise

Figure 9: Spe
tral Transform of Slap NoiseNo attempt was made to apply the Gaus-sian �lter to either DFT or spe
tral transform(Se
t. 2), hen
e the sliding DFT also rea
tspromptly to rapid 
hanges, as we demanded.However, the DFT tends to produ
e overlysharp lines, that lead to a spe
kled spe
trum.Moreover, when the initial samples fall o� fromthe DFT window, the initial spe
trum peak ise
hoed. In 
ontrast, our spe
tral transform pro-du
es more balan
ed frequen
y areas of ex
ita-tion and fades out smoothly, while the initialpeak is even broader than in the DFT.6 Future WorkThe presumably most annoying issue is that ourtransform is still missing its dis
rete inverse im-plementation. Signal manipulation in the fre-quen
y domain appears only useful, when themodi�ed signal 
an be re
onstru
ted from the

frequen
y domain. We are 
on�dent that we will�nd an adequate solution, sin
e our transform is
losely related to sliding DFT and Lapla
e, bothof whi
h are known to be invertible.7 Con
lusionOriginally inspired by the wave theory of light,we developed our spe
tral transform and im-plemented it under Linux as a small Java li-brary for the �eld of audio signal pro
essing,but expe
t broad appli
ability in various �elds ofphysi
s. The transform shifts un
ertainty fromsignal to frequen
y domain by 
onstru
ting a dy-nami
ally adapting spe
trum for a any sharplyde�ned signal at any sharp point of time. Com-pared with DFT, the spe
tral transform givesmore natural results in environments when thespe
trum 
hanges rapidly. The drawba
k is thatit la
ks of determining sharp spe
tral lines, as
an be 
onstru
ted from steady state signals.This behavior is a natural tribute to the dynami-
ally 
hanging spe
trum. Rather, our transformen
ounters the full signal history with exponen-tial de
ay, not just the steady state extrapola-tion of a signal se
tion, as the DFT does.Referen
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